Simulations of the alternating access mechanism of the sodium symporter Mhp1.
نویسندگان
چکیده
Sodium coupled cotransporters of the five-helix inverted repeat (5HIR) superfamily use an alternating access mechanism to transport a myriad of small molecules across the cell membrane. One of the primary steps in this mechanism is the conformational transition from a state poised to bind extracellular substrates to a state that is competent to deliver substrate to the cytoplasm. Here, we construct a coarse-grained model of the 5HIR benzylhydantoin transporter Mhp1 that incorporates experimental structures of the outward- and inward-open states to investigate the mechanism of this conformational change. Using the weighted ensemble path-sampling method, we rigorously sample the outward- to inward-facing transition path ensemble. The transition path ensemble reveals a heterogeneous set of pathways connecting the two states and identifies two modes of transport: one consistent with a strict alternating access mechanism and another where decoupling of the inner and outer gates causes the transient formation of a continuous permeation pathway through the transporter. We also show that the conformational switch between the outward- and inward-open states results from rigid body motions of the hash motif relative to the substrate bundle, supporting the rocking bundle hypothesis. Finally, our methodology provides the groundwork for more chemically detailed investigations of the alternating mechanism.
منابع مشابه
Molecular mechanism of ligand recognition by membrane transport protein, Mhp1
The hydantoin transporter Mhp1 is a sodium-coupled secondary active transport protein of the nucleobase-cation-symport family and a member of the widespread 5-helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed ev...
متن کاملThe alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1
Secondary active transporters move molecules across cell membranes by coupling this process to the energetically favourable downhill movement of ions or protons along an electrochemical gradient. They function by the alternating access model of transport in which, through conformational changes, the substrate binding site alternately faces either side of the membrane. Owing to the difficulties ...
متن کاملMetadynamics Simulations Reveal a Na+ Independent Exiting Path of Galactose for the Inward-Facing Conformation of vSGLT
Sodium-Galactose Transporter (SGLT) is a secondary active symporter which accumulates sugars into cells by using the electrochemical gradient of Na+ across the membrane. Previous computational studies provided insights into the release process of the two ligands (galactose and sodium ion) into the cytoplasm from the inward-facing conformation of Vibrio parahaemolyticus sodium/galactose transpor...
متن کاملThe Molecular Mechanism of Ion-Dependent Gating in Secondary Transporters
LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the mainte...
متن کاملPendrin and sodium/iodide symporter protein expression in the testicular tissue of normal and diabetic rats in prepubertal and post pubertal stages
Pendrin (PDS) and sodium/iodide symporter (NIS) are transmembrane proteins that are located in numerous tissue types, particularly thyroid follicular epithelial cells, where they are entrusted with the regulation of iodine molecules. In the present study, we aimed to clarify changes in PDS and NIS protein expression, in the testicular tissue of prepubertal and <span la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 101 10 شماره
صفحات -
تاریخ انتشار 2011